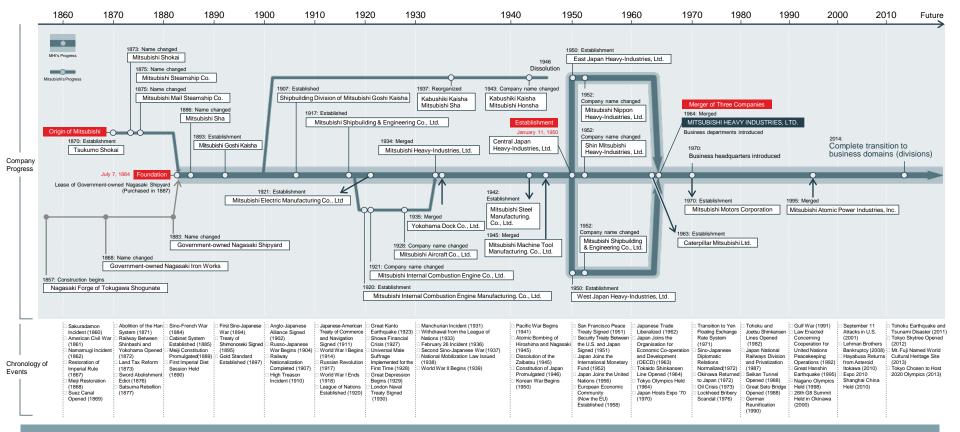
Contributing to Decarbonization of Industries

December 4th, 2020

Fumiharu Shimamoto Chief Regional Officer, Europe Power & Energy Solutions Mitsubishi Heavy Industries Group



Beyond 130 years of history,

MHI Group technologies have supported Japan across rough seas.

Over one hundred and thirty years have elapsed since Mitsubishi first leased the government-owned Nagasaki Shipyard from the Ministry of Industry in 1884. MHI Group technologies have been instrumental in steering Japan's modernization and globalization. The history of Japan's development is etched into MHI Group technologies, products and services that underpin contemporary society.

ENERGY SYSTEMS

Thermal Power Systems

Offshore Wind Power Systems

Aero Engines

Thermal Power Systems

MITSUBISHI POWER, LTD.

- Gas Turbine Combined Cycle (GTCC) Power Plant/Tohoku Electric Power Co., Inc. Sendai Thermal Power Plant No. 4 (Japan)
- 2. Steam Power Plant/JERA Co., Inc. Hitachinaka Thermal Power Station No. 1, No. 2 (Japan)
- 3. Integrated coal Gasification Combined Cycle (IGCC) Power Plant/Joban Joint Power Co., Ltd. Nakoso Power Plant No. 10 (Japan)
- 4. Geothermal Power Plant/Revkiavik Energy Hellisheidi Geothermal Power Plant (Iceland)
- Aero-derivative Gas Turbine FT8® MOBILEPAC® 5.
- 6. LP Steam Turbine Rotor with 54-Inch Blades for Nuclear Power Plant
- 7. M501J Gas Turbine
- 8. 1.120 MVA Turbine Generator
- 9. Flue Gas Desulfurization Plant/Kozienice Power Plant (Poland)
- 10. Solid Oxide Fuel Cell (SOFC)/Micro Gas Turbine (MGT) Hybrid System
- TURBODEN S.P.A.
- 11. Organic Rankine Cycle (ORC) Power System

Offshore Wind Power Systems

MHI VESTAS OFFSHORE WIND A/S

- 12. MVOW Platform: Off shore Wind Turbine (Belgium)
- 13. MVOW Platform: Off shore Wind Turbine (Denmark)
- 14. MVOW Platform: Off shore Wind Turbine (Germany)

Marine Machinery

MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & EQUIPMENT CO., LTD.

- 15. MET Turbocharger
- 16. Ultra Steam Turbine (UST) Plant
- 17. Auxiliary Boiler
- 18. Fin Stabilizers
- 19. Steering Gear

Aero Engines

- MITSUBISHI HEAVY INDUSTRIES AERO ENGINES, LTD.
- 20. V2500 Series (Turbofan)
- 21. Trent Series (Turbofan)
- 22. PW1000G Series (Turbofan)
- 23. MRO: Maintenance, Repair and Overhaul
- 24. TS1 (Turboshaft) Engine, Output Power: 884 SHP [Observation Helicopter OH-1]

Compressors

- MITSUBISHI HEAVY INDUSTRIES COMPRESSOR CORPORATION
- 25. Cracked Gas Compressors and Steam Turbines for Ethylene Plant
- Main Gas Compressor Trains for FPSO
- 27. Product Gas Compressors and Steam Turbines for PDH Plant
- 28. Rotor of Steam Turbines

PLANTS & INFRASTRUCTURE SYSTEMS

Commercial Ships

Marine Structures

Chemical Plants

Transportation Systems

Commercial Ships

MITSUBISHI SHIPBUILDING CO., LTD.

- 1. Ferry, SETTSU
- 2. Cargo-passenger Ship, OGASAWARA MARU
- 3. RO/RO Ship, HIMAWARI 8
- Marine Resources Survey Ship, HAKUREI 4.
- 5. Patrol Vessel, SHUNKO
- 6. LPG Carrier, FUTURE ENERGY
- 7. SOx Scrubber Systems for Large Output Engines
- 8. SOx Scrubber Systems for Small to Medium Output Engines
- 9. LNG Fuel Gas Supply System (FGSS)

Marine Structures

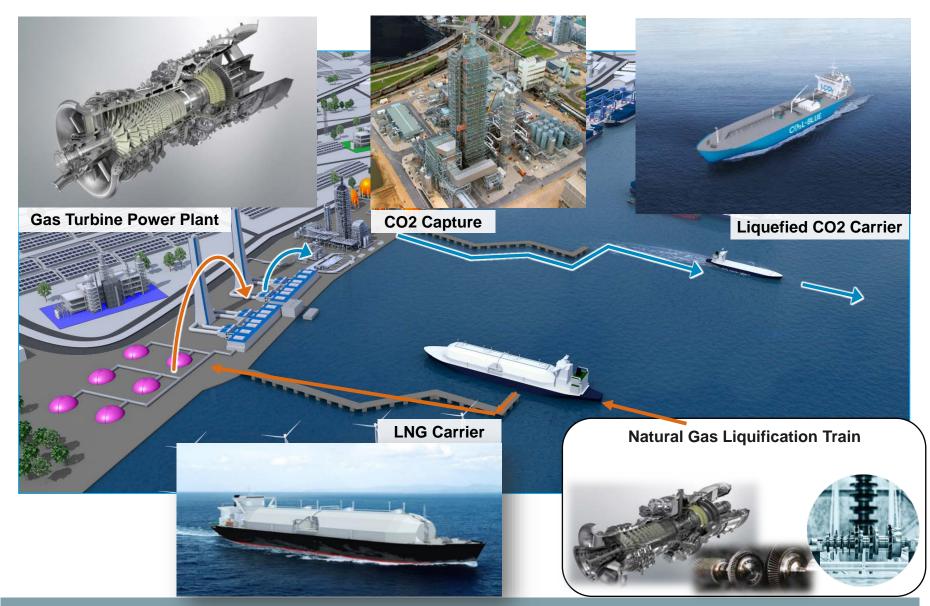
■ MITSUBISHI HEAVY INDUSTRIES MARINE STRUCTURE CO., LTD.

10. KAMI-GOTO National Oil Stockpiling Site

Chemical Plants

MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.

- 11. Ammonia and Methanol Co-production Plant (Tatarstan/Russia)
- 12. Ammonia/Urea Plant (Malaysia)
- 13. Methanol Plant (Venezuela)
- 14. Polyethylene Plant (Mexico)
- 15. Acrylic Acid Plant (Bashkortostan/Russia)
- 16. LNG Receiving Terminal (Niigata, Japan)
- 17. CO₂ Capture Plant (Qatar)
- 18. CO₂ Capture Plant for EOR (U.S.)


Transportation Systems

MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.

- 19. AGT for Tokyo Yurikamome
- 20. Macau LRT
- 21. Tampa International Airport APM (U.S.)
- 22. Super AGT
- 23. Urban Transportation System (Doha Metro)
- 24. High-speed Rail (Taiwan)

Decarbonization – An Integrated Solution

Petra Nova – The World's Largest CO₂ Capture

- The world's largest CO₂ capture plant on coal-fired flue gas has been under commercial operation since December 2016
- ✓ Supported by DOE (U.S. Department of Energy) grant program (CCPI Round 3) and Japanese government finance (JBIC / NEXI)

Plant location	NRG WA Parish Power Plant (Thompsons, TX)	
Project owner	Petra Nova – partnership between NRG Energy and JX Nippon Oil & Gas	
Plant scale	240 MW _{eq}	
CO ₂ capacity	4,776 TPD (1.4 MMtonne/year)	
CO ₂ conc.	11.5 mol%-wet	
CO ₂ removal	90%	

*U.S. Department of Energy "W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Final Environmental Impact Statement Volume I" (Feb, 2013), DOE/EIS-0473

Renewable Energy – Wind Power

Creating Green Hydrogen Value Chain

Renewable Energy - Geothermal

Creating Green Hydrogen Value Chain

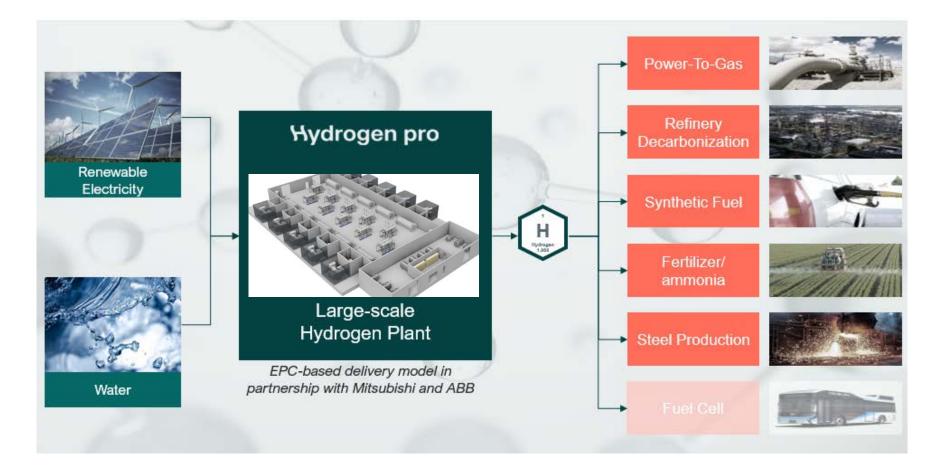
Site: Velika Ciglena, Croatia Customer: MB Holding Start-up: 2018 Configuration: power only ORC power: 17.5 MWe Liquid brine + steam: 171 °C

Renewable Hydrogen – Water Electrolysis

Creating Green Hydrogen Value Chain

Hydrogen pro

- HydrogenPro aims to be a world leading designer and supplier of alkaline electrolyser technology plants and solutions that meet the highest standards for safety, reliability and long lifetime
- HydrogenPro was established in 2013
- Headquarter in Porsgrunn, Norway
- Public listed company on Merkur Market at Oslo Stock Exchange
- Mitsubishi Heavy Industries acquired 9.6% of HydrogenPro in October, 2020



Renewable Hydrogen

Creating Green Hydrogen Value Chain

Ammonia Plant Expertise

Leading EPC Contractor for Ammonia Plant Authorized Licensee of Haldor Topsoe Ammonia Technology Business Development of Blue / Green Ammonia Projects

14.3% share world wide

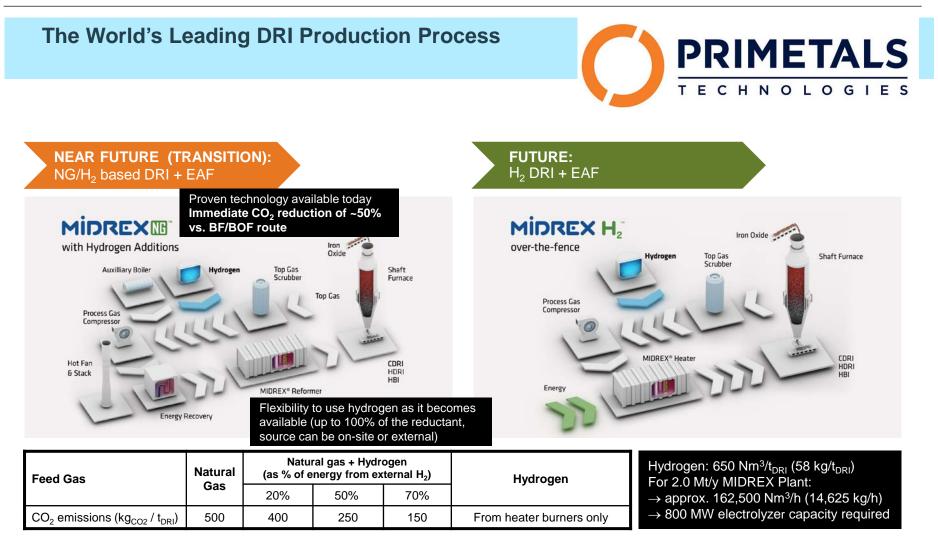
(2008-2018, contractors share for ammonia plant, Capacity-based)

Methanol Plant Expertise

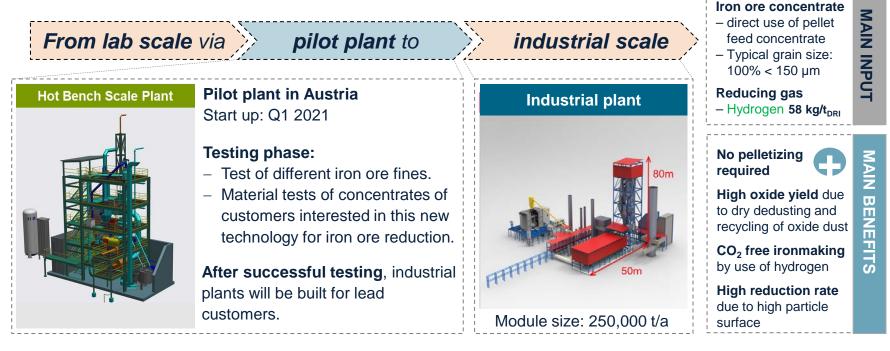
Leading EPC Contractor for Methanol Plant Mitsubishi Methanol Process & Haldor Topsoe Methanol Technology Business Development of Green Methanol Projects

14.0% share world wide

(2000-2018, contractors share for methanol plant, Capacity-based)



Direct Reduction - MIDREX® H₂



The Next Generation DRI Production Process

HYFOR is a new developed direct reduction process for any type of iron ore concentrate (hematite and magnetite)

Advanced Class Gas Turbines for Deep Decarbonization

High Efficiency

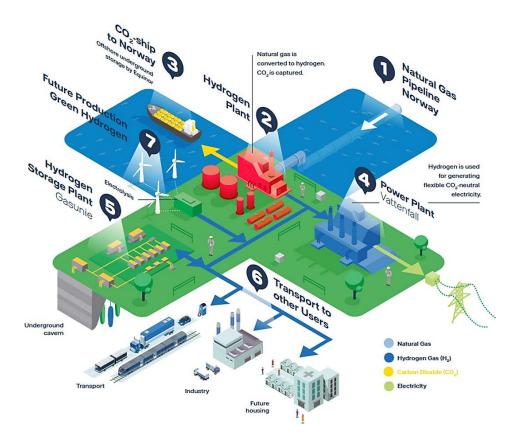
- Achieved 64% CC efficiency with - High pressure compressor (25:1) - Enhanced air-cooled combustor
- Advanced TBC/Aerodynamics

High Reliability

Achieved 99.5% reliability by

- Over 1070k operation hours
- Ordered: 76 GT units, Commercial operation: 45 GT units
 - (J Series as of September 2020)

Fuel Flexibility


Gas Turbine can be fueled by

- Fossil fuel (Natural Gas, Oil)
- Clean fuel (Hydrogen)

Gas Turbine Technology

H2M Project - Towards clean and sustainable hydrogen economy

Turbine Model	M701F	
Power Output	440 MW	
CO ₂ reduction	Up to 2 Mt/year*	
Location Eemshaven, The Netherlands		

The goal is to Kick-start H2 economy by using Blue H2 for Hydrogen (100%) firing in CCGT by 2025, and gradual transition to Green H2.

Development of hydrogen demand by H2M will assist realization of hydrogen infrastructure.

*Expected CO2 emission reduction reaches up to 2Mt/year including use of Hydrogen in Transport, Industry and Housing.

