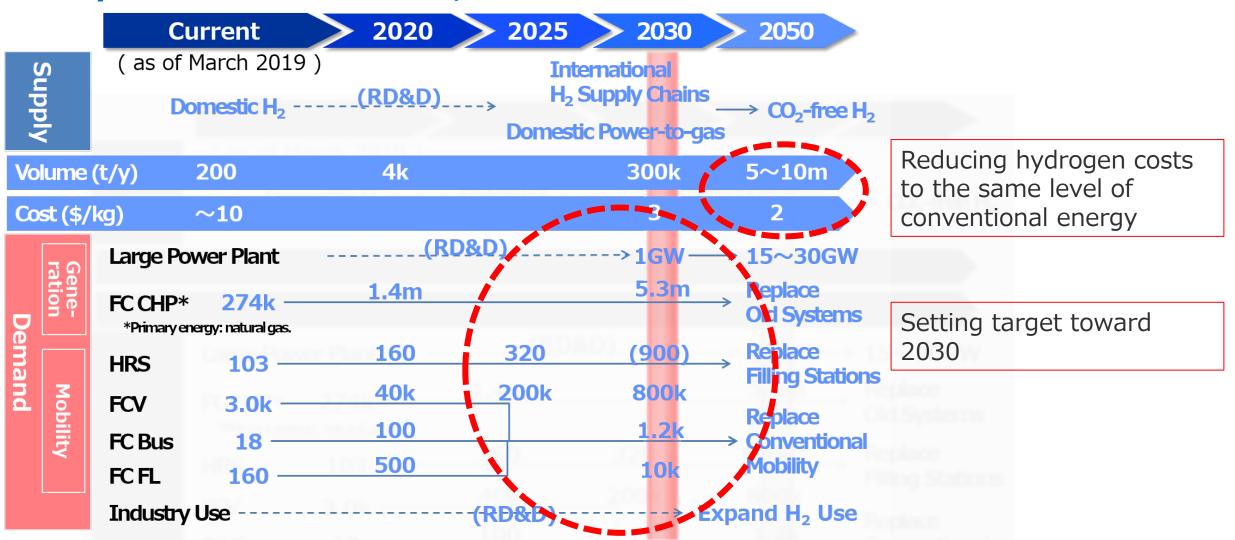


NEDO's approach to realize hydrogen based society

New Energy and Industrial Technology Development Organization (NEDO)

Background: Japan's Energy Situation



- Japan's target: GHGs: <u>▲ 26% in 2030 / ▲ 80% in 2050</u>
- Increasing renewables is key, but not enough

"Basic Hydrogen Strategy" (Dec, 2017)

Clarify the future direction, with the consensus of stakeholders.

Action Plan: "Strategic Roadmap for HFC"

			Goals in the Basic Hydrogen Strategy	Set of targets to achieve	Approach to achieving target
	Use		FCV 200k b y2025 800k by 2030	 Price difference between FCV and HV (¥3m → ¥0.7m) Cost of main FCV system (FC ¥20k/kW → ¥5k/kW Hydrogen Storage ¥0.7m → ¥0.3m) 	 Regulatory reform and developing technology
		Mobility	HRS 320 by 2025 900 by 2030	2025 • Construction and operating costs (Construction cost ¥350m → ¥200m) Operating cost ¥34m→¥15m	 Consideration for creating nation wide network of HRS Extending hours of operation
o II		Σ	Bus 1,200 by 2030	 Costs of components for Compressor ¥90m → ¥50m Accumulator¥50m → ¥10m Early 2020s Vehicle cost of FC bus (¥105m → ¥52.5m) ※In addition, promote development of guidelines and technology development for expansion of hydrogen use in the field of FC trucks, ships and trains. 	Increasing HRS for FC bus
		Power	Commercialize by 2030	2020 ■ Efficiency of hydrogen power generation (26%→27%) **1MW scale	 Developing of high efficiency combustor etc.
		FC	Early realization of grid parity	2025 • Realization of grid parity in commercial and industrial use	Developing FC cell/stack technology
Supply	ppry	Fossil +CCS Fuel +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	Production: Production cost from brown coal gasification (¥several hundred/Nm3→ ¥12/Nm3) Storage/Transport: Scale-up of Liquefied hydrogen tank (thousands m→50,000m) Higher efficiency of Liquefaction (13.6kWh/kg→6kWh/kg)	
	ne	Green H2	System cost of water electrolysis ¥50,000/kW in future	 Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) 	Designated regions for public deployment demonstration tests utilizing the outcomes of the demonstration test in Namie, Fukushima Development of electrolyzer with higher efficiency and durability

[®]NEDO

Hydrogen & Fuel Cells Technology Development Strategy (NEDO

m

₽.

priority items

Field ③

Hydrogen and Fuel Cells Technology Development Strategy

Field 1

✓ Fuel cells for vehicles

Technology Items

Stationary fuel cells

Auxiliary equipment, tanks and related systems

 Substantial reduction or elimination of Pt in catalysts

Technical challenges

 Development of the fuel cells to realize higher efficiency over 65 % for significant cost savings

- ✓ Large-scale hydrogen production
- √ Transport / Storage
- Hydrogen power generation
- ✓ Hvdrogen refueling station

- Development of insulation system
- Control of flashback, combustion oscillation and NOx emission
- Development of fueling protocol to reduce construction and operation costs

✓ Water Electrolysis **Technologies**

- ✓ Industrial Applications
- Discontinuous innovation

Break through of degradation **mechanism** in Electrolyte-materials Road Map for Hydrogen and Fuel Cells

Approach to achieve goals (Action Plans)

Reduction of precious-metal contents in catalysts

Development of **fuel cell stack** technologies for higher efficiency and higher power density

Integrate promotion of regulatory reform and technological development

Development of high-efficiency combustor

Development of large-scale storage tanks for liquefied hydrogen

Durability improvement of water electrolysis system

Accelerate International Momentum

Accelerate International Momentum

Tokyo Statement:

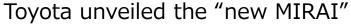
Identified the area to be collaborated internationally

- -Harmonization of RCS
- -Joint research to expand hydrogen utilization
- -Study and evaluation of hydrogen potential
- -Communication, education, outreach

Global Action Agenda of Tokyo Statement:

- Sharing global target (e.g. "Ten, Ten, Ten")
- Promoting international standards
- Developing technologies for promoting hydrogen use in various fields
- Study on hydrogen demand forecasts
- Information sharing and public outreach

Current status: Hydrogen Applications


Items	Japan's Target (Year)	Current status (as of Mar-2020)
Residencial Fuel Cell		
Instration number	5.3 million (2030)	350k
Pay back period (price)	5 years (2030)	PEFC: 7.9 years (JPY 900k / EUR 7.5k) SOFC: 9.5 years (JPY 1,110k / EUR 9.3k)
Mobility		
Nubmer of Passenger Vehicle	800k (2030)	3,757
Nubmer of Fuel Cell Bus	1.2k (2030)	57 (mainly in regular operation)
Hydrogen Refueling Station		
Nubmer of Station	900 (2030)	117 (public stations)
Installation cost (in JPY)	200 million (2025)	310 million (EUR 2.6 million)
Operation cost (in JPY)	15 million (2025)	31 million (EUR 260k)

New Products

30% increasing driving range (over 800km w/full fueling)

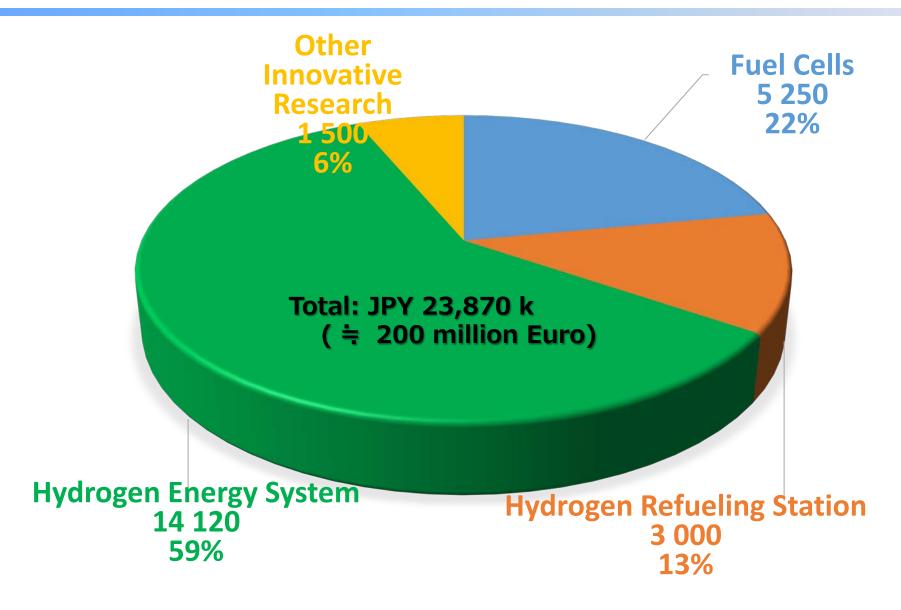
Will be launched late 2020 / early 2021 in Japan

Tokyo Gas released "Ene-Farm Mini" on 10 Oct. 2019

400W power, 80% total efficiency (LHV)

Kyocera's SOFC Unit (W800mm × D350mm × H700mm) (Heat unit: W480mm × D250mm × H750mm)

Policy Measures for introducing New Technology


Promoting Research, Development & Demonstration activities

Market Adaptation
(Suitable Regulation, Code & Standard)

Financial Support / Incentives (Subsidy, Tax Exemption, etc.)

NEDO's Budget for H₂ in 2020

Current Direction of NEDO's Program

First Step: Promoting fuel cell application

Fuel Cells:

(1) PEFC: for mobility

Target:

	2030	2040
Power Density	6kW/L	9kW/L
Max Voltage	> 0.6V	0.85V
Max Temperature	< 100℃	120℃
Cruse range	800 km	> 1,000 km
System Cost	< US\$40 / kW	US\$20 / kW

- Improving productivity (Catalyst, MEA, other materials, Tank, etc.) New applications (Ship, Heavy/Middle duty Vehicle, Drone, etc.)

(2) SOFC: for stationary use

Efficiency > 65% (mono-generation), Durability > 130,000 hrs.

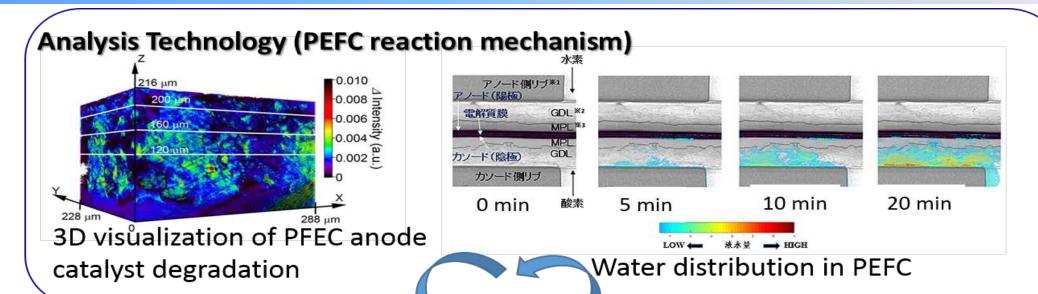
- New technology such as Proton-Conducting SOFC

Current Direction of NEDO's Program

First Step: Promoting fuel cell application

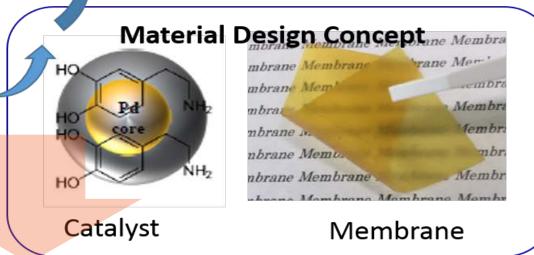
Hydrogen Refueling Station:

Reducing CAPEX / OPEX: make it half by 2025


- To address regulatory reform on FCV/HRS in Japan ex. Unmanned operation with remote monitoring, Risk assessment on HRS, etc.
- Developing low cost equipment (incl. Electro-chemical compressor, polymers, etc.)

Preparing for Heavy Duty Vehicles

- Developing refueling protocol, hydrogen metering, etc.


Fuel Cell Deployment

PEFC performance evaluation

Developing Fuel Cell R&D Platform

[©]NEDO 12

Fuel Cell Deployment

Demonstration at "Real Environment

- Testing a new equipment
- Refueling protocol
- Metering etc.

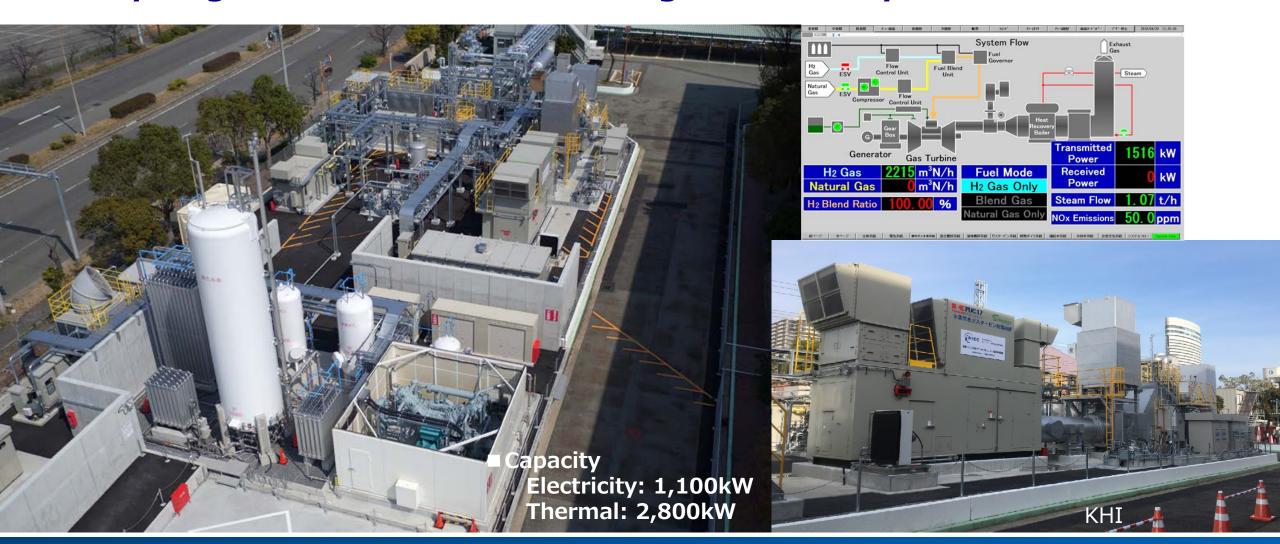
Total System Analysis for cost reduction Education & Training

Current Direction of NEDO's Program

Second Step: Develp H2 demand & Integrate w/ energy system

Hydrogen Supply Chain / Gas Turbine:

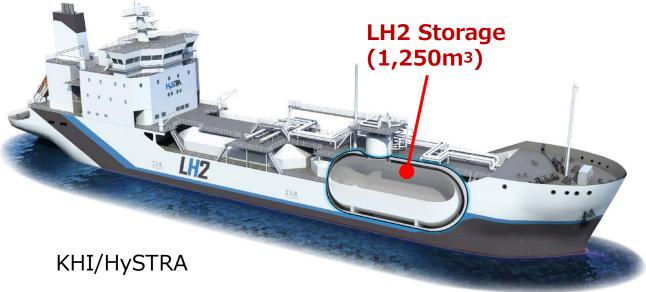
- Developing combustor for Hydrogen Gas Turbine Control of combustion for low NOx, back fire, etc.
- Realizing large scale hydrogen supply chain Hydrogen carriers for long distance transportation


Power to Gas:

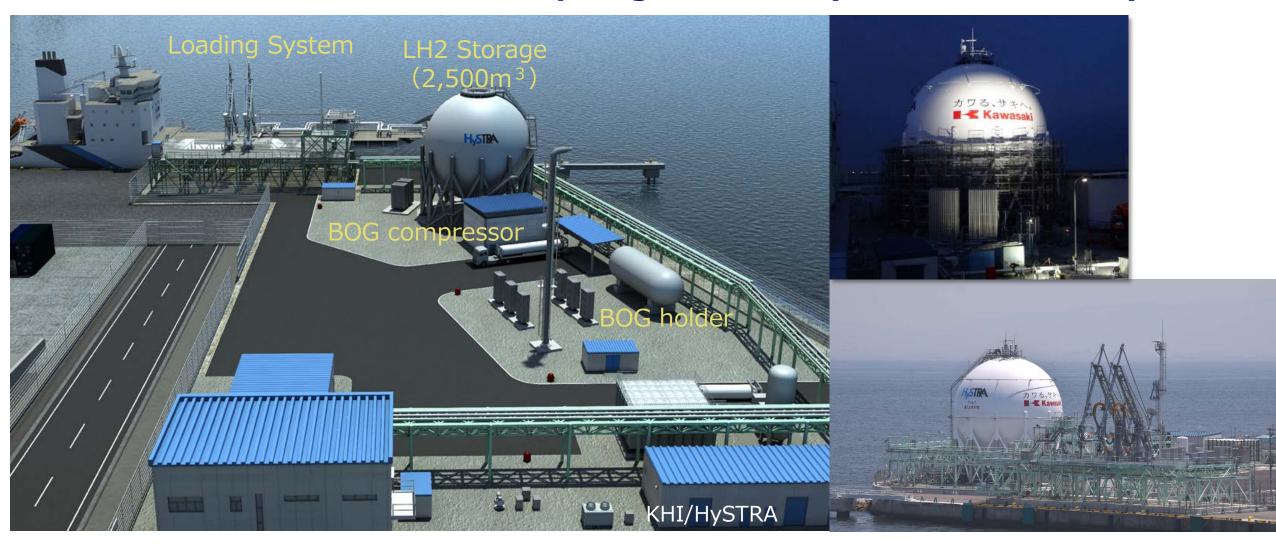
- Developing System Technology System Operation, Energy management, Demand response
- Improving electrolysis technology
 Analyzing reaction mechanism, developing lifetime evaluation, etc.
 Scaling-up, durability, dynamic operation

[©]NEDO 14

1MW Hydrogen/Natural Gas dual fuel gas turbine system



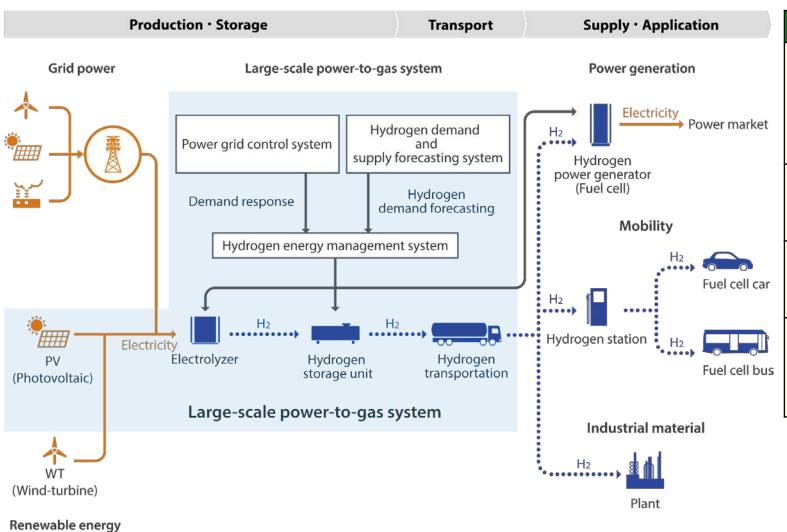
Demonstration with would 1st hydrogen tanker



Length	116m
Width	19m
Propulsion	Motor
Cruising range	11,300 n. m.
Cruising Speed	13 knot
	·

Demonstration with would 1st hydrogen tanker (LH2 Base @Kobe)

[©]NEDO


Demonstrating with world's largest power to gas system with 10MW Alkaline electrolysis and 20MW PV

System Overview

Item	Specification
Function	(1)Produce·Storage·Supply of hydrogen (2)Balancing the supply and demand of the electricity grid
Annual producing capability (Rated output)	900t-H2/year
Input power (Electrolysis)	(Max.) 10MW (Rated) 6MW (Range) 1.5MW \sim 10MW
Hydrogen Storage / transport (Compressed hydrogen)	(1)Tube Trailer 2,642Nm3, 19.6MPa (2)Curdle 265.8Nm3, 19.6MPa

Conclusion

- > Japanese Government strongly promoting hydrogen
 - with Prime Minister's leadership
 - recognizing importance of international collaboration
- > Just started market penetration
 - need to enhance application, improve technology
- Developing low-carbon energy system
 - scaling-up technology
 - integrating with other energy